
Analog Inputs for Raspberry Pi Using the MCP3008
Created by Mikey Sklar

Last updated on 2015-06-18 01:10:10 PM EDT

2
3
5
5
5
6

10
12
15

Guide Contents

Guide Contents
Overview
Connecting the Cobbler to a MCP3008
To follow this tutorial you will need
Why we need an ADC
Wiring Diagram
Necessary Packages
Python Script
Run It

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 2 of 15

Overview

Teaching the Raspberry Pi how to read analog inputs is easier than you think! The Pi does not
include a hardware analog-to-digital converter (http://adafru.it/eYp), but an external ADC (such as
the MCP3008 (http://adafru.it/856)) can be used, along with some bit banged SPI code in Python to
read external analog devices.

Here is a short list of some analog inputs that could be used with this setup:

potentiometer (http://adafru.it/356)
photocell (http://adafru.it/161)
force sensitive resistor (FSR) (http://adafru.it/166)
temperature sensor (http://adafru.it/165)
2-axis joystick (http://adafru.it/512)

This guide uses a potentiometer to control the volume of a mp3 file being played, but the code can
be used as the basis for any kind of analog-input project.

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 3 of 15

https://en.wikipedia.org/wiki/Analog-to-digital_converter
https://www.adafruit.com/products/856
http://www.adafruit.com/products/356
http://www.adafruit.com/products/161
http://www.adafruit.com/products/166
http://www.adafruit.com/products/165
http://www.adafruit.com/products/512

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 4 of 15

Connecting the Cobbler to a MCP3008
To follow this tutorial you will need

MCP3008 DIP-package ADC converter chip (http://adafru.it/856)
10K trimer (http://adafru.it/356) or panel mount potentiometer (http://adafru.it/562)
Adafruit Pi Cobbler (http://adafru.it/914) or Pi Cobbler Plus (http://adafru.it/2029)
Half (http://adafru.it/64) or Full-size breadboard (http://adafru.it/239) (use a full-size one with
the Cobbler Plus)
Breadboarding wires (http://adafru.it/aHz)

And of course a working Raspberry Pi with an Internet connection.

Why we need an ADC
The Raspberry Pi computer does not have a way to read analog inputs. It's a digital-only computer.
Compare this to the Arduino, AVR or PIC microcontrollers that often have 6 or more analog inputs!
Analog inputs are handy because many sensors are analog outputs, so we need a way to make
the Pi analog-friendly.

We'll do that by wiring up an MCP3008 chip (http://adafru.it/856) to it. The
MCP3008 (http://adafru.it/856) acts like a "bridge" between digital and analog. It has 8 analog
inputs and the Pi can query it using 4 digital pins. That makes it a perfect addition to the Pi for
integrating simple sensors like photocells (http://adafru.it/aHA), FSRs (http://adafru.it/aHC)
or potentiometers, thermistors (http://adafru.it/aHD), etc.!

Let's check the datasheet of the MCP3008 chip. (http://adafru.it/aHE) On the first page in the lower
right corner there's a pinout diagram showing the names of the pins:

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 5 of 15

https://www.adafruit.com/products/856
https://www.adafruit.com/products/356
https://www.adafruit.com/products/562
https://www.adafruit.com/products/914
https://www.adafruit.com/products/2029
https://www.adafruit.com/products/64
https://www.adafruit.com/products/239
https://www.adafruit.com/category/82
https://www.adafruit.com/products/856
https://www.adafruit.com/products/856
http://learn.adafruit.com/photocells
http://learn.adafruit.com/force-sensitive-resistor-fsr
http://learn.adafruit.com/thermistor
http://www.adafruit.com/datasheets/MCP3008.pdf

Wiring Diagram
In order to read analog data we need to use the following pins:

VDD (power) and DGND (digital ground) to power the MCP3008 chip. We also need four "SPI"
data pins: DOUT (Data Out from MCP3008), CLK (Clock pin), DIN (Data In from Raspberry Pi),
 and /CS (Chip Select). Finally of course, a source of analog data. We'll be using the basic 10k trim
pot.

The MCP3008 has a few more pins we need to connect: AGND (analog ground, used sometimes
in precision circuitry, which this is not) connects to GND, and VREF (analog voltage reference,
used for changing the "scale" - we want the full scale, so tie it to 3.3V).

Below is a wiring diagram. Connect the 3.3V cobbler pin to the left + rail and the GND pin to the
right - rail. Connect the following pins for the MCP chip

MCP3008 VDD -> 3.3V (red)
MCP3008 VREF -> 3.3V (red)
MCP3008 AGND -> GND (black)
MCP3008 CLK -> #18 (orange)
MCP3008 DOUT -> #23 (yellow)

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 6 of 15

MCP3008 DIN -> #24 (blue)
MCP3008 CS -> #25 (violet)
MCP3008 DGND -> GND (black)

Next connect up the potentiometer. Pin #1 (left) goes to GND (black), #2 (middle) connects to
MCP3008 CH0 (analog input #0) with a gray wire, and #3 (right) connects to 3.3V (red)

Advanced users may note that the Raspberry Pi does have a hardware SPI interface (the Cobbler
pins are labeled MISO/MOSI/SCLK/CE0/CE1). The hardware SPI interface is super fast but not
included in all distributions. For that reason we are using a bit banged SPI implementation so the
SPI pins can be any of the Raspberry Pi's GPIOs (assuming you update the script).

Here's a Fritzing (http://adafru.it/eXu) sketch of the Cobbler Plus version for Model B+ / Pi 2 (click
for a bigger image):

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 7 of 15

http://fritzing.org/home/

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 8 of 15

Download Sketch

http://adafru.it/fql

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 9 of 15

https://learn.adafruit.com/system/assets/assets/000/026/079/original/pi_volume_knob.fzz?1434647202

Necessary Packages
If you've already worked through Playing Sounds and Using Buttons with the Raspberry
Pi (http://adafru.it/eXD), you're probably good to go here. Otherwise, you may need a few things.
Open up a terminal, and enter the following commands:

Update Python (2.x) to the latest release:

Install the latest RPi.GPIO module. We will use easy_install to manage the python packages.

sudo apt-get update
sudo apt-get install python-dev

sudo apt-get install python-setuptools
sudo easy_install rpi.gpio

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 10 of 15

../../../../playing-sounds-and-using-buttons-with-raspberry-pi

Install the ALSA sound utilities and a mp3 player:

$ sudo apt-get install alsa-utils
$ sudo apt-get install mpg321

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 11 of 15

Python Script
This ~100 line python script can be pasted into an editor and saved on your raspberry pi. You can
also grab it directly from the pi if it's connected to the Internet by running git clone
git://gist.github.com/3151375.git

The script is fairly simple. Half of the code (the readadc function) is a function that will 'talk' to the
MCP3008 chip using four digital pins to 'bit bang' the SPI interface (this is because not all
Raspberry Pi's have the hardware SPI function).

The MCP3008 is a 10-bit ADC. That means it will read a value from 0 to 1023 (2 = 1024 values)
where 0 is the same as "ground" and "1023" is the same as "3.3 volts". We don't convert the
number to voltage, although its easy to do that by multiplying the number by (3.3 / 1023).

We check to see if the pot was turned more than 5 counts - this keeps us from being too "jittery"
and resetting the volume too often.

The raw analog count number is then converted into a volume percentage of 0%-100%. When the
trimpot is turned up or down it will print the volume level to STDOUT and adjust the audio level of
the playing file by telling the mixer to adjust the volume.

10

#!/usr/bin/env python

Written by Limor "Ladyada" Fried for Adafruit Industries, (c) 2015
This code is released into the public domain

import time
import os
import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)
DEBUG = 1

read SPI data from MCP3008 chip, 8 possible adc's (0 thru 7)
def readadc(adcnum, clockpin, mosipin, misopin, cspin):
 if ((adcnum > 7) or (adcnum < 0)):
 return -1
 GPIO.output(cspin, True)

 GPIO.output(clockpin, False) # start clock low
 GPIO.output(cspin, False) # bring CS low

 commandout = adcnum
 commandout |= 0x18 # start bit + single-ended bit
 commandout <<= 3 # we only need to send 5 bits here

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 12 of 15

 commandout <<= 3 # we only need to send 5 bits here
 for i in range(5):
 if (commandout & 0x80):
 GPIO.output(mosipin, True)
 else:
 GPIO.output(mosipin, False)
 commandout <<= 1
 GPIO.output(clockpin, True)
 GPIO.output(clockpin, False)

 adcout = 0
 # read in one empty bit, one null bit and 10 ADC bits
 for i in range(12):
 GPIO.output(clockpin, True)
 GPIO.output(clockpin, False)
 adcout <<= 1
 if (GPIO.input(misopin)):
 adcout |= 0x1

 GPIO.output(cspin, True)

 adcout >>= 1 # first bit is 'null' so drop it
 return adcout

change these as desired - they're the pins connected from the
SPI port on the ADC to the Cobbler
SPICLK = 18
SPIMISO = 23
SPIMOSI = 24
SPICS = 25

set up the SPI interface pins
GPIO.setup(SPIMOSI, GPIO.OUT)
GPIO.setup(SPIMISO, GPIO.IN)
GPIO.setup(SPICLK, GPIO.OUT)
GPIO.setup(SPICS, GPIO.OUT)

10k trim pot connected to adc #0
potentiometer_adc = 0;

last_read = 0 # this keeps track of the last potentiometer value
tolerance = 5 # to keep from being jittery we'll only change
 # volume when the pot has moved more than 5 'counts'

while True:
 # we'll assume that the pot didn't move
 trim_pot_changed = False

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 13 of 15

After you have pasted this script into a file, make it executable:

 # read the analog pin
 trim_pot = readadc(potentiometer_adc, SPICLK, SPIMOSI, SPIMISO, SPICS)
 # how much has it changed since the last read?
 pot_adjust = abs(trim_pot - last_read)

 if DEBUG:
 print "trim_pot:", trim_pot
 print "pot_adjust:", pot_adjust
 print "last_read", last_read

 if (pot_adjust > tolerance):
 trim_pot_changed = True

 if DEBUG:
 print "trim_pot_changed", trim_pot_changed

 if (trim_pot_changed):
 set_volume = trim_pot / 10.24 # convert 10bit adc0 (0-1024) trim pot read into 0-100 volume level
 set_volume = round(set_volume) # round out decimal value
 set_volume = int(set_volume) # cast volume as integer

 print 'Volume = {volume}%' .format(volume = set_volume)
 set_vol_cmd = 'sudo amixer cset numid=1 -- {volume}% > /dev/null' .format(volume = set_volume)
 os.system(set_vol_cmd) # set volume

 if DEBUG:
 print "set_volume", set_volume
 print "tri_pot_changed", set_volume

 # save the potentiometer reading for the next loop
 last_read = trim_pot

 # hang out and do nothing for a half second
 time.sleep(0.5)

chmod +x raspi-adc-pot.py

© Adafruit Industries https://learn.adafruit.com/reading-a-analog-in-and-controlling-audio-
volume-with-the-raspberry-pi

Page 14 of 15

Run It
On every boot, the sound module will need to be loaded and set to output to the 3.5mm audio jack:

Next, play a mp3 file:

Leave the file playing and open a new terminal window or SSH connection to start the Python
script:

Now simply adjust the trim pot and you should hear the audio level change as the mp3 file is
playing.

sudo modprobe snd-bcm2835
sudo amixer cset numid=3 1

mpg321 <filename>

sudo ./raspi-adc-pot.py

© Adafruit Industries Last Updated: 2015-06-18 01:10:11 PM EDT Page 15 of 15

	Guide Contents
	Overview
	Connecting the Cobbler to a MCP3008
	To follow this tutorial you will need
	Why we need an ADC
	Wiring Diagram
	Necessary Packages
	Python Script
	Run It

